Pre-treatment of eucalypts biomass towards enzymatic saccharification
نویسندگان
چکیده
Background There are a few possible ways to produce ethanol from lignocellulosic biomass, for instance, thermochemical and acid hydrolysis. However, enzymatic hydrolysis of carbohydrates is considered the greenest process for saccharification, followed by sugar fermentation into ethanol. The main challenge of the enzymatic saccharification process is that cellulose is not exposed to the enzyme action in the lignin matrix. The cellulose molecules are arranged in semi-crystalline nanofibrils immersed in lignin matrix with hemicelluloses (polyoses) and extractives between them acting as coupling agents. These nanofibrils are placed together to form helical microfibrils inside the cell wall. Thus, a pre-treatment is necessary to make room for the enzymes to reach the cellulose fibril surfaces in order for the whole process to become economically feasible. There are many pre-treatments proposed in specialized literature, but their efficiencies are dependent on the biomass composition [1-4]. Moreover, these treatments have to address some constraints such as the recyclability of the chemicals used, low consumption of energy, and sustainability concerns. We devised a future possibility of a cellulose pulp mill to be transformed into a biorefinary, where besides cellulose pulp, ethanol could also be produced. In the Brazilian pulp mill industry, the process most commonly used is the Kraft process, so the digestion with green and white liquors can be adapted for pre-treatment towards enzymatic saccharification. Also, the industry had already tackled recycling of the black liquor – obtained after wood chips digestion –, recuperating thermal energy by burning lignin and recovering the green liquor. This work is part of our research to evaluate some modifications on the green liquor digestion towards enzymatic saccharification. We evaluated efficiencies of some pre-treatments with green liquor through enzymatic hydrolysis for holocellulose saccharification.
منابع مشابه
High temperature pre-digestion of corn stover biomass for improved product yields
INTRODUCTION The efficient conversion of lignocellulosic feedstocks remains a key step in the commercialization of biofuels. One of the barriers to cost-effective conversion of lignocellulosic biomass to sugars remains the enzymatic saccharification process step. Here, we describe a novel hybrid processing approach comprising enzymatic pre-digestion with newly characterized hyperthermophilic en...
متن کاملMicrowave-Assisted Alkali Pre-Treatment, Densification and Enzymatic Saccharification of Canola Straw and Oat Hull
The effects of microwave-assisted alkali pre-treatment on pellets' characteristics and enzymatic saccharification for bioethanol production using lignocellulosic biomass of canola straw and oat hull were investigated. The ground canola straw and oat hull were immersed in distilled water, sodium hydroxide and potassium hydroxide solutions at two concentrations (0.75% and 1.5% w/v) and exposed to...
متن کاملRecent Status on Enzymatic Saccharification of Lignocellulosic Biomass for Bioethanol Production
During the past decades, bioethanol becomes the best alternative to fossil fuels. Ethanol production by using edible feedstocks like sugarcane and grains became a point of concern in terms of the food supply and demand. Lignocellulosic biomass comprises non-edible feedstock opened a new method for the second-generation bioethanol production. Bioethanol production from lignocellulosic biomass is...
متن کاملSaccharification Performances of Miscanthus at the Pilot and Miniaturized Assay Scales: Genotype and Year Variabilities According to the Biomass Composition
HIGHLIGHTS Biomass production and cell wall composition are differentially impacted by harvesting year and genotypes, influencing then cellulose conversion in miniaturized assay.Using a high-throughput miniaturized and semi-automated method for performing the pretreatment and saccharification steps at laboratory scale allows for the assessment of these factors on the biomass potential for produ...
متن کاملA precise and consistent assay for major wall polymer features that distinctively determine biomass saccharification in transgenic rice by near-infrared spectroscopy
Background The genetic modification of plant cell walls has been considered to reduce lignocellulose recalcitrance in bioenergy crops. As a result, it is important to develop a precise and rapid assay for the major wall polymer features that affect biomass saccharification in a large population of transgenic plants. In this study, we collected a total of 246 transgenic rice plants that, respect...
متن کامل